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A Pair Correlation Function Characterizing the Anisotropy of Force Networks *
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Force networks may underlie the constitutive relations among granular solids and granular flows and inter-state
transitions. However, it is difficult to effectively describe the anisotropy of force networks. We propose a new pair
correlation function 𝑔(𝑟, 𝜃) to describe the characteristic lengths and orientations of force chains that are composed
of particles with contact forces greater than the threshold values. A formulation 𝑔(𝑟, 𝜃) ≈ 𝑎(𝑟)+𝑏(𝑟) cos 2(𝜃−𝜋/2)

is used to fit the 𝑔(𝑟, 𝜃) data. The characteristic lengths and orientations of force networks are then elucidated.
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In dense granular packings, multiple force trans-
mission pathways may be established to support ex-
ternal loadings. Even small perturbations of loadings
can sensitively induce the pathways. Elastic energy
of granular assembly is stored in force chains; evolu-
tion of force chains results in one part of the elastic
energy being transformed into kinetic energy, or vice
versa, while the remainder of the elastic energy is dis-
sipated. Therefore, structure and moment of such a
force network are dominant in determining the ma-
jor properties of granular materials, including elastic-
ity, plasticity, failure and flowability [see Refs. [1,2] for
granular solids and Refs. [3,4] for granular flows]. Al-
though researchers have taken great efforts, precise
understanding of the disordered spatial structure of
force chains has remained elusive. For example, the
authors of Refs. [5,6] found that the lengths of a force
chain follow an exponential distribution. We also pre-
viously found that the probability density distribution
of force chain lengths obeys a power law and remark-
ably, the exponent is not affected by packing fractions
and inter-particle friction.[7] Complex networks offer
a multitude of statistical measures for the quantita-
tive characterization of evolving force networks, many
of which can be calculated by manipulating an adja-
cency matrix.[8]

The pair correlation function 𝑔(𝑟) may be an effec-
tive tool in studying disordered force networks.[9,10] It
was shown that the height of the first peak of 𝑔(𝑟), 𝑔1,
indicates signatures of both structured and jamming
transitions. The 𝑔(𝑟) function focuses on the statis-
tics of spatial locations of particles, while ignoring the
more important orientations of the subsequently con-
nected particles, that is, force chains. The anisotropy
of structure can be characterized by a fabric tensor,
which is defined by the distribution of contact normal

vectors.[11,12] It incorporates measurements of both
the magnitude of the force and the positions of parti-
cles in contact. Nevertheless, the fabric tensor cannot
represent the spatial properties of force chains.

Since 𝑔(𝑟) provides an initiation point for such
problems, we propose a variant pair correlation func-
tion 𝑔(𝑟, 𝜃). For a two-dimensional system, 𝑔(𝑟, 𝜃) is
defined as

𝑔(𝑟, 𝜃) =
(︁ 𝑆

𝑁

)︁𝑛(𝑟, 𝜃)
𝑟𝑑𝑟𝑑𝜃

, (1)

where 𝑆 is the area of the granular assembly, 𝑁 is the
total number of particles and 𝑛(𝑟, 𝜃) is the number
of particles located within the area 𝑟𝑑𝑟𝑑𝜃. The pa-
rameter 𝜃 represents the orientation of the area with
respect to the horizontal direction. Obviously, 𝑔(𝑟, 𝜃)
represents the probability of finding two particles sep-
arated by a distance 𝑟 in the direction of 𝜃. In this
work, 𝑑𝑟 = 0.1⟨𝐷⟩, 𝑑𝜃 = 𝜋/180. ⟨𝐷⟩ is the mean di-
ameter of particles. The proposed 𝑔(𝑟, 𝜃) is expected
to analyze the anisotropy of a force network.

In this work, 10000 round disks were generated
in a two-dimensional square cell. The particle diame-
ters obey a Gaussian distribution between 0.025m and
0.1195 m. The density is 2650Kg·m−3 and normal and
tangential spring stiffness values both are 1×107 N/m.
The inter-particle friction is assumed to be 0.1. Ini-
tially, the four walls move inwards to isotropically
compress the assembly, leading to a well-jammed state
with a fraction 𝜑 = 0.8411. Subsequently, the left and
right walls stop moving, but the top and bottom walls
move further inwards to induce an anisotropic stress
in the granular assembly, that is, the principal stress
is along the vertical direction.

When an external force such as gravity or pres-
sure is applied to a granular assembly, the propaga-
tion path of the force is a crucial consideration in
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certain applications. A broad consensus has reached
that the spatial distribution of contact forces char-
acterizes strong concentration along force chains and
these strong chains typically extend on space scales
much larger than the grain dimensions, e.g. lengths
of about 10 particle diameters. It is further found
that only around 40% of contacts carry greater than
the mean interparticle normal force ⟨𝑓⟩, but hold
80% of the elastic energy in the system, which im-
plies that strong force chains carry forces larger than
the mean dominate granular properties.[7] Obviously,
the threshold value for 𝑓𝑐 is essential for defining a
strong force chain. As shown in the inset of Fig. 1,
the particles in a local area are depicted if the inter-
particle force is greater than 𝑓𝑐, where 𝑓𝑐 = 1.0⟨𝑓⟩,
1.2⟨𝑓⟩, 1.5⟨𝑓⟩ and 1.8⟨𝑓⟩, respectively. First, it can
be observed that at larger 𝑓𝑐, fewer particles remain
but the anisotropic configuration is more clearly dis-
played. The description of such a network with 𝑔(𝑟, 𝜃)

is the main objective of this work. Second, we note
that the value of the mean diameter of remaining par-
ticles increases as 𝑓𝑐 increases, which indicates that
strong forces are primarily transferred by large par-
ticles. It may be interpreted that large particles are
easily jammed and act as backbones to support the as-
sembly. The small particles experience smaller stresses
because there remains a certain degree of agitation
room between themselves and their neighbors. There-
fore, the potential crushing of large particles may be
more severe than that of smaller ones.
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Fig. 1. The mean diameter of the particles in force chains.
The interparticle force is greater than 𝑓𝑐. The insets are
local networks at 𝑓𝑐 = 1.0⟨𝑓⟩ and 1.5⟨𝑓⟩.

The 𝑔(𝑟, 𝜃) distributions are calculated at different
𝑓𝑐. Taking 𝑔(𝑟, 𝜃) at 𝑓𝑐 = 1.5⟨𝑓⟩ such as in Fig. 2,
for each angle of 𝜃, 𝑔(𝑟, 𝜃) possesses an oscillating
shape characteristic of any disordered medium and
clear peaks exist at approximate values of 𝑟 = ⟨𝐷⟩,
2⟨𝐷⟩ and 3⟨𝐷⟩. As 𝑟 → ∞, 𝑔(𝑟, 𝜃) approaches 1.
Meanwhile, we find that at 𝑟 = ⟨𝐷⟩ and 𝑟 = 2⟨𝐷⟩,
two peaks of equal height exist at around 𝜃 = 𝜋/2

and 3𝜋/2, which indicates the orientation of the prin-
cipal stress in the anisotropically compressed assem-
bly. Due to strong scattering at around 3⟨𝐷⟩ of 𝑔(𝑟, 𝜃),

we study the height of 𝑔(𝑟, 𝜃) at 𝑟 = ⟨𝐷⟩ and 2⟨𝐷⟩ for
different 𝑓𝑐.
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Fig. 2. Pair correlation function 𝑔(𝑟, 𝜃) at 𝑓𝑐 = 1.5⟨𝑓⟩.
The distance r is given in units of the mean particle diam-
eter ⟨𝐷⟩. Two clear peaks exist at 𝜋/2 and 3𝜋/2 at both
𝑟 = ⟨𝐷⟩ and 2⟨𝐷⟩.

0

2

4

6

0

30

60
90

120

150

1
8
0

210

240
270

(a) (b)

300

330

0

2

4

6

0

1

2

0

30

60
90

120

150

1
8
0

210

240
270

300

330

0

1

2

 

 

⊲<f> ⊲<f>

⊲<f>
⊲<f>

⊲<f> ⊲<f>

 

Fig. 3. Characteristics of 𝑔(𝑟, 𝜃) distribution at 𝑟 = ⟨𝐷⟩
(a) and 𝑟 = 2⟨𝐷⟩ (b). Blue dots are calculations and solid
curves are fittings. The corresponding 𝑓𝑐 is indicated for
individual curves.

In Fig. 3, 𝑔(𝑟, 𝜃) data are represented as blue dots
for 𝑓𝑐 = 1.8⟨𝑓⟩, 1.5⟨𝑓⟩ and 1.2⟨𝑓⟩, respectively. Here
we adopt a similar description to the Fourier series as
a representation of the symmetry property 𝑔(𝑟, 𝜃) =

𝑔(𝑟, 𝜃) + 𝜋 as follows:

𝑔(𝑟, 𝜃) ≈ 𝑎(𝑟) + 𝑏(𝑟) cos 2(𝜃 − 𝜋/2), (2)

where 𝜋/2 indicates the principal external loadings
perpendicular to the horizontal direction. It is in-
teresting to note that the parameter 𝑏 may limit the
degree of anisotropy, that is, a larger value of 𝑏 in-
dicates higher anisotropy. The fittings are shown as
solid curves, which provide significantly more smooth
descriptions. The parameter 𝑏 in the left figure for ⟨𝐷⟩
is much greater than that in the right one for 2⟨𝐷⟩.
For 𝑟 = 3⟨𝐷⟩ and even larger regions, 𝑏 would become
much smaller and the anisotropy may even disappear
for longer ranges. Figure 4 shows the dependence of 𝑏
on 𝑓𝑐 and 𝑟. When 𝑟 = ⟨𝐷⟩, 𝑏 is 1.663 at 𝑓𝑐 = 1.8⟨𝑓⟩,
while 𝑏 is already close to 0 at 𝑓𝑐 ≈ 0.8⟨𝑓⟩, which im-
plies an approximately uniform distribution of 𝑔(𝑟, 𝜃)
at smaller values of 𝑓𝑐. At 𝑟 = ⟨𝐷⟩, the parameter
𝑏 implies the distribution of normal vectors of inter-
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particle contacts and it shares a similar meaning with
the fabric tensor. More importantly, for 𝑟 ≥ 2⟨𝐷⟩, 𝑏
represents the orientation distributions of force net-
works carrying forces greater than a threshold value.
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Fig. 4. Variation of parameter 𝑏 in Eq. (2). A larger value
of 𝑏 implies higher anisotropy.

From Eq. (2), the characteristic length and orien-
tation of a force network might be preliminarily deter-
mined. For example, at 𝑓𝑐 = 1.5⟨𝑓⟩, 𝑔(𝑟, 𝜃) is clearly
larger than 1 until 𝑟 = 3⟨𝐷⟩, that is, four particles.
We may say that the typical length of the force chain
under the condition of 𝑓𝑐 = 1.5⟨𝑓⟩ equals the com-
bined diameters of four particles. Regarding the orien-
tation, it is very clear that the peaks exist at 𝜃 = 𝜋/2

and 𝜃 = 2𝜋/2 for 𝑟 ≤ 3⟨𝐷⟩, which indicates that the
orientation of such a force network is normal to the

horizontal direction, that is, parallel to the direction
of the principal stress. As 𝑓𝑐 increases, for example,
𝑓𝑐 = 1.8⟨𝑓⟩, the typical length of a force chain is found
to equal the combined diameters of three particles.

In summary, the primary characteristic of a force
network is anisotropy, both intrinsic and induced.
The quantification of such anisotropy remains diffi-
cult. Therefore, the new pair correlation function
𝑔(𝑟, 𝜃) proposed here is demonstrated to be an effec-
tive tool in studying the structural signatures of these
force networks, in terms of both characteristic lengths
and orientations.
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